Counting loop diagrams: computational complexity of higher-order amplitude evaluation

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Counting loop diagrams: Computational complexity of higher-order amplitude evaluation

We discuss the computational complexity of the perturbative evaluation of scattering amplitudes, both by the Caravaglios-Moretti algorithm and by direct evaluation of the individual diagrams. For a self-interacting scalar theory, we determine the complexity as a function of the number of external legs. We describe a method for obtaining the number of topologically inequivalent Feynman graphs co...

متن کامل

The Computational Complexity of Counting

The complexity theory of counting contrasts intriguingly with that of existence or optimization. 1. Counting versus existence The branch of theoretical computer science known as computational complexity is concerned with quantifying the computational resources required to achieve specified computational goals. Classically, the goal is often to decide the existence of a certain combinatorial str...

متن کامل

Higher Order City Voronoi Diagrams

We investigate higher-order Voronoi diagrams in the city metric. This metric is induced by quickest paths in the L1 metric in the presence of an accelerating transportation network of axis-parallel line segments. For the structural complexity of k-order city Voronoi diagrams of n point sites, we show an upper bound of O(k(n − k) + kc) and a lower bound of Ω(n+ kc), where c is the complexity of ...

متن کامل

Higher-Order Computational Logic

This paper presents the case for the use of higher-order logic as a foundation for computational logic. A suitable polymorphicallytyped, higher-order logic is introduced and its syntax and proof theory briefly described. In addition, a metric space of closed terms suitable for knowledge representation purposes is presented. The approach to representing individuals is illustrated with some examp...

متن کامل

The Computational Complexity of ( XOR ; AND ) - Counting

We characterize the computational complexity of counting the exact number of satisfying assignments in (XOR; AND)-formulas in their RSE-representation (i.e., equivalently, polyno-mials in GF 2]]x 1 ; : : : ; x n ]). This problem refrained for some time eeords to nd a polynomial time solution and the eeorts to prove the problem to be #P-complete. Both main results can be generalized to the arbit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The European Physical Journal C

سال: 2004

ISSN: 1434-6044,1434-6052

DOI: 10.1140/epjc/s2004-01958-2